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Abstract. In this paper we consider the ignition and structure of a reacting compressible mixing layer
using finitc rate chemistry lying between two streams of reactants with dilferent frecstream speeds and tem-
peratures. Numcrical integration of the governing cquations show that the structure of the reacting flow can
be quite complicated depending on the magnitude of the Zeldovich number. In particular, for sufliciently
large Zeldovich number, the three regimes first described by Linan and Crespo (1976); ie., ignition,
deflagration, and diffusion flame, cccur in supersonic as well as in subsonic flows. An analysis of both the
ignition and diffusion flame regimes is presented using a combination of large Zeldovich number asymptot-
ics and numerics. This allows us to analyze the behavior of these regimes as a function of the parameters of
the problem. For the ignition regime, a well defined ignition point will always exist provided the adiabatic
flame temperature is greater than either freestream temperature. One important result is that al supersonic
speeds ignition occurs far downstream from the plate and, as the flow is accelerated to hypersonic speeds,
ignition is exponentially dclayed. For the diffusion flame regime, the location of the flame changes
significantly with changes in the cquivalence ratio and the Schmidt numbers.

This work was supported, in part, by the Nauonal Aeronautics and Space Administration under NASA Contract No. NAS1-18605 while
the authors were in residence at the Institute for Computer Applications in Science and Engincering, NASA Langley Rescarch Center,
Hampton, VA 23665.
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1. Introduction. Quite recently it has been realized that an understanding of the structure and the sta-
bility characteristics of compressible, particularly supersonic, rcacting mixing layers is extremely important
in the context of the scramjet engine. We have begun a systematic study (Jackson and Grosch, 1990) of the
inviscid spatial stability problem of these flows with the combustion zone modcled by the flame sheet, as
described by Jackson and Hussaini (1988). We found that the additon of combustion in the form of a flamc
sheet had important, and complex, cffects on the flow stability.  In additon, we also showed that with
sufficicnt heat in the flame sheet the flow can undergo a transition from convective to absolute instability,
even without the presence of a region of reversed flow in the layer. There are of course situations in which
the flame sheet model may not be a sufficiendy accurate representation of the combustion process. This
could be important in the calculation of the stability characteristics of the reacting flow. Therefore in this
papcr we return to the problem of determining the structure of the taminar diffusion flame in a compressi-
ble, particularly supcrsonic, mixing layer in using finite ratc chemistry.

In a scminal paper, Linan and Crespo (1976) examined the structure of a diffusion flame in the
unsteady mixing of two half spaces of fucl and oxidizer. By using a combination of large activation cnergy
asymptotics and numerics they showed that three laminar regimes exist within the flow, the ignition,
deflagration, and diffusion regimes. These same regimes were also found by Jackson and Hussaini (1988) in
their study of combustion occuring between two parallel supersonic streams with ncarly the same speed and
temperature. These three regimes are shown in Figure 1. The ignition regime s a region where the com-
bustible gases mix untl, at some finite distance downstream of the plate, a thermal explosion occurs and the
gas 13 ignited. The second regime s the deflagration region. After ignition, a pair of well-detined
deflagration waves (or "premixed flamelets”™) emerge according o classical thermal explosion theory, These
waves penetrate the mixing layer unul all of the deticient reactant is consumed. Just downstream of the
deflagration wave, a diffusion flame regime exists where the mixing process is governed by diffusion in the
direction normal to the flame. This regime covers the bulk of the overall flow ficld. Collectively. the igni-
tion and deflagration regimes can occupy a very small portion of the flow field, especially at supersonie
speeds. These regimes are highly nonlinear and hence are not easily amenable to analysis. Il the incoming
flow were turbulent rather than laminar, we surmise there would be a collection of initially discrete
premixed flamelets. Full numerical sotutions, based on the compressible Navier Stokes equations, appear 1o
miss the ignition and the deflagraton regimes, and hence, the premixed famelet is not captured.  Perhaps

carcful fine-tuning of the numerics will uncover these regimes,

The spatial development of the reacting compressible mixing layer is considered here without making
the assumption of infinite Damkohler number.  If the Damkohler number were o be taken to be infinite, the
fiow and combustion ficlds could be described by similarity solutions. With a finite Damkohler number, the
flow and combustion ficlds evolve in the downstream direction and only approacii the similarity solutions of
the flame sheet at infinite distance from the plate. The mean fields with finite Damkohler number will, in a
future paper, be used in stability calculations.

In the next section we formulate the problem. Numcrical solutions to the full cquations are then
given in section 3. Sections 4 and 5 present an analysis of the ignition and diffusion flame regimes using a
combination of large activation cnergy (and hence Zeldovich number) asymptotics and numerics.  Conclu-
sions arc then given in the final section.
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2. Formulation of the Mean Flow Equations. The nondimensional cquations governing the stcady
two dimensional flow of a compressible, reacting mixing layer with zero pressure gradient lying between
strcams of reactants with different speeds and temperatures (Figure 1) arc given by (Williams, 1985)

(pU). + V), =0, 1=pT, (lab)

pWUU, +VU,) = (uU,),, (1¢)

pUT, + VI,) = Proi(uly), + (y~ DMAuU} + BQ, (1d)
pWF,  +VF, ) =S¢, (wF; ), - B, j =12 (1)
Q=DpF Fye T, (an

In these cquations, the x axis is along the direction of flow; the y axis is normal 1o the flow; U and V are
the velocity components in the x and y directions, respectively; p is the density; T is the temperature; and
£y and F; are the mass fractions, with the reaction assumed 10 be irreversible and of the Arrhenius type.
The viscosity p is assumed to be a function of temperature. The nondimensional paramcters appearing
above are the Prandtl number Pr, the Schmidt number Sc, = Pr Le, for species j where Le, is the Lewis
number for species j, the Mach number M = U /a,, , the Zeldovich number Ze = E/R T, with E the
dimensional activation energy and R the universal gas constant, D the Damkohler number defined as the
rato of the characteristic diffusion time scale 10 the characteristic chemical time scale, B the heat release
per unit mass fraction of the reactant, B, a paramcter involving stoichiometry, and finally y the specific-
heats ratio. The equations were nondimensionalized by the freestream values T, po., U, Fy .. for the tem-
perature, density, velocities and mass fractions, respectively.  Lengths are referred 1o some characteristic
length scale of the flow.

The houndary conditions consistent with (1) arc

r'=U=F =1, F,=0 at x =0,y >0, and x >0,y — oo, 2a)

I =B U =B < F =0,F,= TZ“— =By/BNo @ x=0,y <0, and x >0,y - —co, (2b)

1o
where ¢ is the equivalence ratio defined as the ratio of the mass fraction Fy in the fast stream 10 the mass
fracuon F; in the slow sucam divided by the ratio of their molecular weights times their stoichiometric
cocfficients. If ¢ = 1, the mixture is said to be stoichiometric, if ¢ > 1 it is £ rich, and if ¢ < 1, it is F,
lean. If By is less than onc, the slow gas is relatively cold compared to the fast stream, and if By is greater
than onc it is relatively hot. For what follows we take the stoichiometric parameter B/ to be unity.

The mean flow cquations (1) arc first transformed into the incompressible form by means of the
Howarth-Dorodnitzyn transformation




y
Y= jpdy. V=pV+Ufp. dy 3
0

Next we transform to

n-n, = = )

which is the similarity variable for the chemically frozen heat conduction problem, and n, corresponds to u
shift in the origin. For the case of both strcams being supersonic, 1, is determined uniquely by a compau-
bility condition found by matching the pressure across the mixing layer, resulting in

) -1 Bu
===V (x,00) = Vi(x —o0),
YL NMPBIB -1 Br
which reduces to that given by Ting (1959) for By = 1. We note here that if the freestream velocities were
subsonic, then the compatibility condition would be trivially satisfied, and thus m,, would remain indeter-
minate (Klemp and Acrivos, 1972). Under these transformations, with U = f7(n) and Vo= (1]{ iy,
¢quation (1) become

P21 =0, (Sa)
Axf L, =Pr T 2T (Y- WM Y =4xBPD F Fye T, (50)
dxfF, . ~S,F = 2fF =-4xDF Fe” !, (50)

where the primes indicates partial differemiation with respect to the similarity variable i, and we have
assumed the lincar viscosity law p =71 (for Chapman’s lincar law p = C T, the constant C can be scaled
out by rescaling n and f appropriately, but must be borne in mind when transforming the variables back 1o
their dimensional forms). In terms of the transformed variables, the boundary conditions are

T=f=F, =1 Fy=0 at x =0,m>0, and x >0, > oo, (6a)

T=Br.f =B, Fi=0,F,=¢" ar x=0,1<0, and x >0, - -, (6h)

Finally, we note that the Damkohler number D can be scaled out of the eguations by a rescaling of the x
coordinate. Thus, the Damkohler number is not a truc parameter of the above system, However, rescaling x
by the Damkohler number is not particularly uscful. Since D is typically exponcntially large the rescaled
coordinate will be exponentially stretched, and this is not desirable from a numerical viewpoint.

3. Numerical Solutions. The sysiem (5) with boundary conditions (6) must be solved numerically.
Noting that f is only a function of 1, we scc that (5b,c) arc parabolic in x and thus can be solved by a
marching procedure in x. We do this by a Crank-Nicolson procedurc. This lcads to an implicit nonlincar
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system of equations in T} which must be solved at cach x step. These are solved by an iterative scheme
using the boundary conditions in 1} as given in (6).

In Figurc 2a we plot the maximum temperature in n versus x for Ze =10, M =f, =0,
Br = B = ¢ = 1. The adiabatic flame temperature is 1.5 for these conditions {(sce cquation (50)), and 1s larger
than cither freestrcam temperature. There is a smooth and gradual wransition from the inert solution at
x =0 o a diffusion flame. In Figurc 2b we show similar results but with Ze = 30 and all other parameters
the same. Note the sudden transition between the incrt solution and the diffusion flame solution occurring
in a narrow range in x around x = 3. This initial rcgion defines the ignition regime, and hence the fiame
location. Similar results are shown in Figure 3 but for M = 2 with an adiabatic flame temperature of 1.7.
From this figurc it is apparcat that the ignition regime also exists in supersonic flows. As the Mach number
increases there is a corresponding increase in the incrt temperature at x = 0 duc to viscous heating, thus

lessening the relative cffect of combustion on the overall wmperature field.

In Figure 4 we plot the temperature and mass fracton profiles as a function of 1 at vanous x loca-
tions for the same conditions as in Figure 2b. In Figure 4a the rapid rise in the iemperature over 3 nrow
range of x should be noted: this indicates ignition. Note also that the temperature peak shifts and that the
profile is asymmetric duc to the asymmetry in the Lock velocity profile. Figure 4b shows the profile of the
F. mass fraction. At the smalier values of x, £ decreases gradually from 1 at = +o0 1o 0 at 1 = - o9,
with F; varying mos: rapidly over the range -3 < n < 1. This shows that there is a diffusion of £, from
the n > 0 region into the n € 0 region with 7 = 0 only at ) = —oo. As x is increased the rate of change of
£, with 1 over this zone increases.  For larger x one can see that £ drops to zero for i just below zero
showing the presence of a diffusion flame in which all of £, is consumed. But note that there is a small
sccondary maximum in the F, distribution in -3 <1 < ~1. This shows the presence of a "premixed
flamelet” in this premixed region. The distribution of £ in 1 at various x is shown in Figure d4¢ and is the
converse of that of F;. The only exception is in the sccondary maxima, showing that the presence of the
“premixed flamelet” is much more pronounced. Again the asymmetry of the secondury maxima is due to the

asymmetry of the velocity profile.

The existence of the "premixed flamelets” and the diffusion flame 1s shown quite clearly in Figure S,
where we plot the loct in the (x, 7)) plane of the maxima of €, the chemical production term, also for the
data of Figure 2b. As shown in this figure, the position of the maximum decreases from about = -0.2
x =0 wncarly n=-0.6 at x =2.9. The maximum valuc of € incrcases along this curve. At x =29
ignition occurs and two maxima appear giving rise 10 the "premixed flamelets”. Beyond the ignition point
the premixed flamelets move outwards in the shear layer until all of the deficient reactant is consumed. The
appearance of the third maxima just behind the ignition point marks the appearance of the diffusion flame.
As x is further increased, the diffusion flame becomes dominant and, as x — oo, the diffusion fame thins
and approaches a flamc shect characterized by local chemical equilibrium (Jackson & Grosch, 1990). Note

that the diffusion flame location is constant in I as x increases.

In Figure Sb we show similar results for the same values of the parameters except that B = 0.5 and
B = 1.5. This casc corresponds to uncqual freestrcam temperatures. The adiabatic flame temperature 15 1.5
(again sce (50)), and is larger than cither freestream temperature. Note that the ignition point has moved
into the region of higher frecstrecam temperature, and the location of the diffusion flame is unchanged while
that of the premixed flames has changed. In Figure S¢ we show results for By = 0.5 and B = 04. The




5.

adiabatic flame temperature in this case is 0.95, and is smaller than the freestrcam temperature at +ec. In
contrast to the two previous figures, there is no well defined ignition point; the premixed flame merges
smoothly into the diffusion flame whose location is unchanged. In addition, thc premixed flamelets are
absent. Finally, we nole that the behaviour described in Figure 5 also occurs for Mach numbers greater than
zero.

In the following two sections, an analysis of the ignition regime and a bricf discussion of the diffusion
flame regime is given using a combination of large activation energy (and hence Zeldovich number) asymp-
totics and numerics.

4. Ignition Regime. To investigate the above behaviour analytically for large Zeldovich numbers, we
take Le; =1, Pr =1, resulting in SC/ = 1. This allows us to consider lincar combinations of (5b) and (5¢)
which eliminates the source terms. The solutions of the resulting equations, using the boundary conditions
(6), are given by

P+ BF =B+ (- Br e Byw s 5L a( - - W, M

T +BF,=Br +Bo0 +(1-B; ~Bo )Y+ _Y%i MZ(1 =B P -9, ()

where

L =By (1 -Be) 0<By <l
Y= (9)
L U rerfmyi2 B =1.

Thus F, and £, can be eliminated from the encrgy equation (5b), yiclding
Ax T, -T =2f T - (y- DM2(1 - By (¥)*

4 -
= BD (Br + (1 -Br +B)W+ 72 Lz - Beywa - w -1

X [Br +Bo™ +(1-By PO )W+ %LMZ(I SRR - W) - Tle % T (10)
for the tecmperature, subject to the boundary conditions

T=1 at x=0,n>0, and x >0, > oo, (1)

T =PBr at x=0,1<0, and x >0, 5 —co. (11b)
In the abscence of chemistry, equation (10) reduccs to

Axf'T, =T =2f T - (y- DM?(1 - By)*(¥)* = 0, (12)




which possesses the inert similarity solution
-1
T=Tim) = 1= (=Bt - ¥)+ L= M2 - By P v (1 - ), (13)

which is also a solution of (10) for small x. As x increases, more of the combustible mixes until, at some
finiic distance downstream of the plate, a thermal explosion occurs characterized by significant departure
from the incrt.

To analyze the ignition process, we expand about the inert by defining T,
T'=2 (T -T)), (14)

and take the asymptotic limit Ze — oo. Substituting into (10), we sce that the left hand side bccomes
O (Z¢™"y while the right hand side is O (D e_ze/T')‘ where 7+ = max(T;). In order 1o balance these terms,
D must therefore have the form

¢ Ze Ta B
D = —+— , 15)
B3 7 e (
where & will be chosen in the course of the analysis. Substituting (14) and (15) into (10) yiclds the follow-
ing cquation for T,

dx Ty, -1 -2f7T =4x 6?3 IBY - Ze™' T, |

2

[ 1+ 2% (1, - T.)

X [BQ“(]—‘P)—Ze“'I’l]cxpt sz | (16)
- Uy i
which must be solved subject o the boundary conditions
Ty=0 at x=0 andat M > *eo amn

Note that the right hand side of (16) is exponentially small except where |7, - 7. | = O (Ze™"). There arc
now scveral cases o consider, depending upon the magnitude of the parameters By, By, and M. Each case
is described below.

4.1 |1 -Byl<<l, |1 -Byl<<], and M =0Q).

This casc corresponds to the simple but important case of ignition for nearly cqual freestrecam temperatures
and vclocities, and the analysis is presented by Jackson and Hussaini (1988). For this rcason, we only bricfly
revicw the results here. We begin by setting

Br=Ze(1-PBr). Py =VZe (1 -By) (18)




1.
with Br, By, and M fixed and O (1). In particular, we sec that
F=n+0Ze™, W=W,+0Z"), V¥,-= %(1 v erfm). (19)
The inert solution (13) is expanded as
T =1+ 27 (=Br (- W) + L M2BEw, (1 - W)l + 0 2™, 20

which yields T. = 1. Substituting into (16), together with the choice 8 = 1, yiclds the following cquation
for the disturbancc temperature

4xT -2nTy -T{ =4x¥, (1 - \¥,) exp|T, - Br (1 - ¥,) + 7;] MIBEW, (1-¥,), n

subject 1o the boundary conditions (17). This equation was solved numericaily by a Crank-Nicolson implicit
scheme. As x increases, the solution for T, becomes unbounded at some finite location (x. .M. ) downstream
of the plate, indicating thermal runaway. The results arc presented in Figure 6, where we plot x. and 1. as
a function of M By, for various valucs of By. Note that for a fixed By, incrcasing M B, causes the ignition
point to move closer to the origin. For a fixed M B, increasing (or decreasing) BT from zcro (i.c., cooling
(or heating) the gas from below) causes Mo to move into the region of higher freestream temperature. In
addition, x. increases as the gas is cooicd below and decreases as the gas is heated below.

As noted above, as By increases or decreases from zero, the ignition point moves into the region of
higher freestream temperature. This casc corresponds to different freestream temperatures, and can be
analyzed in the limit [By| — o. We shall assume By < 1 (By > 0) and hence the ignition point is located in
the region 1 >> 1. The analysis for the case By > 1 (By < 0) is similar. Following the analysis of Linan and
Crespo (1976), we sct

Braa-w)=2z, 0<z <oo, (22)
and using the asymplotic expansion of ¥, , we sce that

n?=InP;/2Vn) - Inn - Inz. (23)
The reaction zone is located where z = O (1), and to a first approximation we get

N2 =In@;/2vr) - Inn., (24)

where N+ defines the ignition location. Since the chemistry is confined to a thin region about 1., we shift to
the reaction zone coordinate

Inz. (25)
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Substitution into (16), together with T+ = 1, and neglecting terms of O (M+?), yields a canonical equation for
T,. Repeating the analysis for B > 1 yields a canonical cquation for T’y of cxacdy the same form, the
differences being in the definition of the parameters, the flame now being located in the slow strcam where
the gas is initially hoter, and T. = ;. This canonical cquation, originally given by Linan and Crespo

(1976) in a diffcrent context, is

—xit 2Py, = (2 - Ay)e¥T? (26)
where
[ x/Brad By <1 C o0 -Brip  Bret
X = A = 27
L x/(-Brd) Br >1, | By - /B Br> 1

This equation must be solved subject to the boundary conditions
Wiy =0, () =0, (2%)

The first boundary condition s a restatement of (173, while the second boundary condition comes trom
matching with the chemically trozen region 1p = 0 (1), Note that x is now a parameter of the equation.
Linan and Crespo have shown that for A < 1, y is doubled valued for x, < x|, single valued at
v. - xy,,and does not exast for x> x; . Near x;, we note that dy/ dx, becomes large showing that the x
partial dervative can no longer be neglected in (16). Therefore x;, may be considered as the ignition point.
For A > 1y is single valued for all xy indicating that there is no well defined ignition point. In this case
the prenuxed flame merges smoothly with the diffusion flame and there are no premixed flamelets. This
behaviour s shown numerically in Figure Sc. In Figure 7 we plot the ignition point x; versus AL As A
approgches one trom helow, the ignition point moves off 1o infinity, while for A > 1 there is no well detined

ntton point.
420 11 - Bl B <1, and M << 1.

This case corresponds to nearly equal freestream temperatures in a shear flow at small Mach numbers, and

we therefore set
Br=Ze(W-Pr) M="ZeM, (29)

with B; and M tixed and O (1). The inert solution (13) is now expanded as

Tr=1+Ze ' -Br-w)+ 7; ’ ME(1 - Bu )W - W) + 0Ze™d), (30)

again yiclding T. = 1. Here, W is given by (9a). Substituting into (16), again with the choice & = 1, yiclds

the cquation for the disturbance temperature
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axf'T, -2f Ty =T, =4x¥( -Wexpll), -Br(1 -¥)+ %1—/{12(1 -Bu YA -¥), (31)

-

subject to the boundary conditions (17). This equation was again solved by a Crank-Nicolson scheme.  As x
increases, the solution for T becomes unbounded at some finite location (x., 1. ) downstrcam of the plate.
indicating thermal runaway. Some results are presented in Figure 8, where we plot x. and n. as a function
of By for various values of M and B = 0. We first note that for B, = 1, the ignition point is independent
of the Mach number. For a fixed M, decreasing B, from one causes the ignition point o move back
toward the platc and into the slower moving gas. At fixed By < I, an increase in M causes the ignition
point to shift toward the origin.

Increasing or decrcasing By has the same effect on the ignition location as in the previous case. To
sce this, we first note that the asymptotic expansion of the Lock profile (9a) for large n is given by

( I-A@+B)  ep(-M+8)) N> oo
=1 (32
E Bl + A (n +B )“: ('Xp(" B(: (n + B )2) T] —3 - oo,

where 4 and B arc known constants. Following the analysis of the previous section, we agamn obtin the

canonical cquation (26) for the temperature perturbation, with x; now given by

L Brme s B Br <t
X, :{ 33
L eBrme s B Br>1,

and A as before.
43 By >0, 0<PBr <1, and M >0

For Mach numbers greater than zero, ;- < 1 and any value of By, the inert solution (13) has a maximum at
1, =0; e,

Wil -By o+ V-ji M- Bt - 2\\’)} =0 (3

If ¥ =0, then the location of the reaction zone will oceur in the outer region M| >> 1 where the gas is
initially hotter. Since the analysis for this case will be similar o that of the previous two cases, we will not
present it here. If the second term of (34) is zcro, then the reaction zone will occur in the mixing layer, and
is given by the implicit rclation

I-Br
(- DM*(1 - By)*

V. =W, ) = % N (35)
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The comresponding maximum value of 7; is given by

(1-Br)?
20y~ DM2(1 ~ By )

1-Br

T. smax(T,):\-—2——+1;8‘—M2(1—BU)2+ (36)

Substituting (34-36) into (16) shows that the right hand side of (16) is exponcntially small except in a nar-
row region where [7; — 7. | = O (Ze™"). Outside this region the equation is cssentially frozen, and is given
by

AxT,, =T +2f7T], 37

valid on cither side of the reaction zone. To study the structure of the recaction zone we define the new

coordinate
nN="n. +8z, (38)
where 8 is the thickness of the reaction zone and is not yet specified. The wmperature and velocity are also
cxpanded as
=T, x)y+dTx. )+ -, W=We + 8z W v oo (39
Substitution into (16) yiclds
. Y- 1,2 2 ':,37
431, 11_‘~—i———M (1= By, -2
g = —dx W (L - Wayexp | — — |, (10)
dz- i I
4
where we have chosen 8 = Ze ™' 2. Note that {40) can be integrated once to yicld
ar, o )
LI —d(x) j —b~ cxp[~l)22‘]dz + Cy(x), (C2))
dz “o\n
where
o g V,E
d(x):4x\}‘.(l—‘*’.)cxp[ll_/l.‘IT, (42a)
PR Al TEVT RN DT S 5
b= =M1 By (P T (42b)

Evaluating (41) at 7 = e yiclds the matching conditions for (37). Specifically, we now solve (37) subject
1o the boundary and jump conditions
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‘ dry
Tix.~) =0, T(x,n)=T(x) ﬁ(x,nf) = ¢y(x) - d(x), (43)
). R . dr, _
Ti(x,—o) =0, T(x.n)=T,(x), —d—n—(x,'r]. ) = ¢ (x), (E5)]
with the mitial condiuons
ron=0 n=n.. (45)

Equation {(37), valid on cither side of the reaction zone, can be solved numerically by marching forward in
x. The unknown functions T (x) and ¢(x ) arc chosen at cach x location so as to satisfy the boundary con-
dinons at N = *eo, Thermal runaway will occur at (x«,m.), thus defining the flame location. In Figure 9 we
show T, and ¢ s a function of x for B; = 0.5, B;: =0, and M = 2. Note that as x approaches x., 7.,
becomes unbounded indicating thermal runaway. In Figure 10 we plot the ignition location x. and 1. as a
tunction of the Mach numbe. for B = 0 and vartous values of 7. As the Mach number becomes large x.
moves off o+ while M. tends o zero for any Br. This shows that in the supersonic region ignition
oceurs far downstream of the plate and. as the flow is accelerated to hypersonic speeds, ignition 1s exponen-
talis delayed. For uncqual freestream temperatures (B # 1), as the Mach number goes o zero then 1.
moves out of the minng layer into the region of higher freestream temperature. When this occurs this

analysis s no longer appropnate, and one must consider the case of W = 0 in (34).

5. Diffusion Flame Rev '« Typically, a diffusion flame is characterized by a chemical reaction time
that 5 much smaller than a chamcteristic diffusion time. Chemical reactions then occur in @ narrow zone
between the fuel and the oxidizer, where the concentrations of both reactants are very small. Mathemat-
cally. the assumpuion of very fast chemical reaction rates leads to the limit of infinitc Damkohler number
which reduces the diffusion flame 1o a flame sheet (e, local chemical equilibrium).  This assumption
significantly  reduces the complexity of the problem since it climinates the analysis associated with the
chemical kineties. For many flows, the assumption of local chemical equilibrium adequately predicts the
location and the shape of the diffusion flame (Buckmaster and Ludford, 1982; Williams, 1985). Since the
flamc sheet model has a simple similarity solution and hence is amenable o analysis, we give its structure
below.  For finite values of the Damkohler number, cquations (5b¢) must be solved directly using the
numcrical schemc mentioned above.

Assuming unit Lewis and Prandil numbers and a lincar viscosity faw, the profile associated with the
flame sheet model is given by (Jackson and Hussaini, 1988, Jackson and Grosch, 1990)

Fi=1-@1+¢H(0-¥, Fa=0, (46)

T=Br+Bo7 +(1-PBr-BoHW¥+ Y; Lm2a-Boywa - vy, (A7)

vatid for n > N . and
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F,=0, Fa=0"'- (1 +¢HY, (48)

T =B+ (1 -Br +P)¥ + 7_21 MZQ - B y¥Y( -, (49)

valid for n <m,. Here, 0, gives the location of the flame sheet where both the reactants vanish, and T
takes the adiabatic flame valuc

- -1, .,
T, =Br+ (- Br + B, + To— M2 - BP9, (1- ). (50)
The flame location is given by the implicit relation
Y, =V = (51
I (T]/) 1+0 (51}

which is independent of B, and M. This is only valid for the case of a lincar viscosity law where the
momentum equation decouples from the energy cquation. For a more general viscosity law, the flame loca-
ton will depend on By and M as well. When using (3) o transform back to the physical coordinates, the
diffusion flame location in physical space will depend on 8;;, ¢, By and M, independently of the viscosity-
temperature relation. The internal structure of the diffusion flame, which appears as a discontinuity on the 1y

scale. 1y deseribed inn Jackson and Hussaini (1988),

The above assumption ol unit Lewis and Prandtl numbers fed to a closed-form analytical solution.
Since the Prandtl number 1s about (.72 and the Lewis numbers are not one, the Schmidt numbers will in
gencral not be one. To detennine the influence of the Schmidt numbers on the location of the diffusion

flamie, we begin by considering (5b,¢) in the Limit of infinite Damkohler number

Provt’ « 2T+ (y- DMETY =0, (52)

Se,F 2 fF) =0, (53)

valid on cither side of the flame sheet. The appropriate boundury and jump conditions are given by

T=1, F,=1 F,=0 as M - oo, (34
[Pr'T + BSeTF1 =0, {T]1=0, Fi=F,;=0, at M =m, (54b)
T=Br. Fy=0, F,=0" as m — -oo, (54¢)

where [ ] denotes the jump ( )n,' - ’n, at m, . Integrating the cquations (53) for the mass fractions yiclds

Fi=1-c,[(¥)dn,  Fp=0, (55)
n
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valid for n >y, and
1 - Se
F,=0, F2=¢r'-c2j (¥ %dn, (56)
valid for n < ;. Using the boundary condition £, = F, = 0 at v, yiclds

-1
61:—'1—‘, «:2:;/——9—. (57

nj ¥y dn [ oy 2an
/

- oo

The location of the flame sheet n,, where both reactants vanish simultancously, is given by the implicit
relation

Ny

oSca [ (WY Hdn = Se, (¥,

)S(:ZASrl j (\V')Scldﬂ, (5«\()
y

obtained from the jump condition (S4b) on the derivatives. In Figurc 11 we plot the flame location as a
function of Sc; for various cases. In Figure 11a we show the variation with Sc,. As Sc, increases the flame
locauon moves into the slower moving stream. In Figure 11b we show the variation with the equivalence
ratio. As ¢ increascs the flame location also moves into the stower moving stream. Finally, in Figure 1lc we
show the variation with B,-. As B, increases the flame moves into the faster stream.

6. Conclusions. In this paper we have considered the ignition and structure of a reacting compressible
mixing layer using finite rate chemistry lying between two streams of reactants with different freestream
speeds and temperatures.  Numerical integration of the grverning equations show that the structure of the
reacting flow can be quite complicated depending on the magnitude of the Zeldovich number. In particular,
for sufficicndy large Zeldovich number, the three regimes first described by Linan and Crespo (1976); 1.,
ignition, deflagration, and diffusion flame, occur in supersonic as well as in subsonic flows. Our numerics
pick up the premixed flamelets as clearly shown by the distribution of the production term. Again, depend-
ing on the magnitude of the Zeldovich number, there can be a gradual or sudden transition from an inert
solution to a diffusion flame.

An analysis of both the ignition and diffusion flame regimes was presented using a combination of
large Zeldovich number asymptotics and numerics. This allowed us to analyze the behavior of these regimes
as a function of the parameters of the problem. For the ignition regime, a well defined ignition point will
always cxist provided the adiabatic flame temperature is greater than cither freestrcam temperature.  One
important result is that at supersonic speeds ignition occurs far downstream from the plate and, as the flow
1s accelerated 1o hypersonic speeds, ignition is exponcntially delayed. For the diffusion flame regime, the
location of the flame changes significantly with changes in the equivalence ratio and the Schmidt numbers.

There arc substantial changes in the temperature and mass fraction distribution as the mixing layer
cvolves downstrcam. Thesc are expected to have a considerable effect on the stability characteristics of the
flow. The changes, and particularly the rate of change, in the mean profiles were shown to be very sensitive
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1o the value of the Zeldovich number. Therefore we expect that the stability characteristics will also be
quite sensitive to the value of the Zeldovich number. The stability calculations arc underway and will be
reperted at a later date.
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Figure 4. Plot of (a) temperature, (b) F, mass fraction, (c) F, mass fraction versus 1
for M =By =0, Ppr =B =9 =1, Ze =30. Here, the arrow denotes increasing x,
withx = 1, 2, 2.5, 2.8, 29, 295, 3, 3.1, 3.2, 33, 35, 4.
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